

Annie Facchinetti

Oxford **Mathematics**

Primary Years Programme

Contents

UNIVERSITY PRESS

australia & new zealand

NUMBER, PATTERN AND FUNCTION		MEASUREMENT, SHAPE AND SPACE	
Unit 1 Number and place value		Unit 5 Using units of measurement	
l. Place value	2	l. Length and perimeter	65
2. Odd and even	6	2. Areα	69
3. Addition mental strategies	10	3. Volume and capacity	73
4. Addition written strategies	14	4. Mass	77
5. Subtraction mental strategies	19	5. Temperature	81
6. Subtraction written strategies	23	6. Time	85
7. Multiplication and division facts	28	7. Timelines	89
8. Multiplication written strategies	32	TT 1: 0 Cl	
9. Division written strategies	37	Unit 6 Shape	
		l. 2D shapes	93
Unit 2 Fractions and decimals	43	2. 3D shapes	97
l. Equivalent fractions	41	Unit 7 Geometric reasoning	
2. Improper fractions and mixed numbers		l. Angles	101
3. Decimal fractions	49	1. 111.9102	101
Unit 3 Money and financial mathemat	ics	Unit 8 Location and transformation	
l. Money and money calculations	53	l. Symmetry	105
in Froncy and money carearations		2. Scales and maps	109
Unit 4 Patterns and algebra			
l. Number patterns	57	DATA HANDLING	
2. Problem solving	61		
		Unit 9 Data representation and	
		interpretation	
		l. Collecting data	113
		2. Displaying and interpreting data	117
		Unit 10 Chance	
		l. Chance events	121
011-00-0		2. Chance experiments	125
OXFORD		Glossarv	129
UNIVERSITY PRESS		Glossury	145

Answers

139

Place value

Guided practice

- 1 Show these numbers on the number expanders.
- a 34 926

b 97 563

Independent practice

17 329

80 154

64 078

49 461

28 935

Expand each number by place value.

+

3

Rewrite from smallest to largest.

WORLD COLLECTION RECORDS

Collection number	Description	Number of items
1	Pairs of earrings	37 706
2	"Do not disturb" signs	11 570
3	Smart phones	1563
4	Dinosaur eggs	10 008
5	Rat and mouse memorabilia	47 398
6	Number plates	11 345
7	Toenail clippings	24 999
8	Magazines	50 953
9	Key chains	47 200
10	Olympic postage stamps	15 183

Collection number	Number of items

How can you tell if one number is larger than another?

- 4 Write these numbers in words.
- a 56 927
- b 80 401
- c 42 058
- Write the numerals for these numbers.
- a Sixty-eight thousand, one hundred and forty-two
- b Twenty-four thousand and seventy _____
- c Ninety thousand and three _____

Extended practice

1	Round up or down to the nearest 10.		
a	73 b 28 c 1364 d 62 147		
2	Round up or down to the nearest 100.		
a	591 b 1603 c 21 977		
3	Round up or down to the nearest 1000.		
a	6099 b 24 270 c 93 804		
4	Round up or down to the nearest 10 000.		
a	19 878 b 41 997 c 83 025		
	David david to the manual 100 000		
5	Round up or down to the nearest 100 000.		
а	498 531 b 628 197 c 240 799		
6	Write the numerals for:		
a	1 hundred thousand, 4 ten thousands, 44 hundreds and 2 tens.		
b	120 hundreds and 81 ones.		
C	61 thousands 45 tons and 9 and		
d	402 thousands, 32 tens and 5 ones.		
е	49 thousands and 6 ones.		
7	Rewrite the numbers from question 6 from smallest to largest.		

OXFORD UNIVERSITY PRESS

The last digit of a number tells us if it is odd or even.

23 657 is **odd**

because 7 is odd.

47 924 is **even**

because 4 is even.

I wonder if 1 million is odd or even?

Guided practice

1	Circle the last digit in each number, then write if it is odd or even.

- 573
- 914

1390

8056

23 474

- f 42 689
- 95 005
- 75 000
- 10 101
- 42 867
- k 57 838
- 75 383
- If you added 1 to each number in question 1, would each one be odd or even?
- a

b

d

g

- k

h

Independent practice

1	7 2 6 3 5
Use	e these digits to make:
a	the largest odd number possible.
b	the smallest odd number possible.
C	the largest even number possible.
d	the smallest even number possible
2	9 0 8 0 1
Use	e these digits to make:
a	the largest even number possible.
b	the largest odd number possible.
C	the smallest even number possible.
d	the smallest odd number possible
3	4 5 0 6 7
Use	e these digits to make:
a	the largest odd number with 7 in the tens place.
b	the smallest even number with 0 in the thousands place.
C	the largest even number with 5 in the ten thousands place.
d	the smallest odd number with 4 in the hundreds place.

OXFORD UNIVERSITY PRESS

If you add an even number to an even number, the answer is always even. Fill in the other addition and subtraction rules.

Example	Operation	Answer
4 + 4 = 8	even + even	even
4 + 5 = 9	even + odd	
5 + 4 = 9	odd + even	
5 + 5 = 10	odd + odd	
8 – 2 = 6	even – even	
8 – 3 = 5	even – odd	
9 – 4 = 5	odd – even	
9 – 3 = 6	odd – odd	

If you multiply an even number by an even number, the answer is always even. Fill in the other multiplication rules.

Example	Operation	Answer
$2 \times 2 = 4$	even × even	even
$2 \times 3 = 6$	even ×	
5 × 2 = 10	×	
5 × 3 = 15	×	

1	6	Write whether the answer will be odd or even.
١	U	ville whether the answer will be odd or even.

You can use these rules to help check if your calculations are correct.

Extended practice

Can you think of any examples that don't fit these rules?

- Solve the equations, then decide if the statements are true or false.
- a

Only even numbers can be divided exactly by 2.

Only odd numbers can be divided exactly by 3.

Only even numbers can be divided exactly by 4.

True False

2 Use your knowledge of odd and even numbers to sort these larger numbers.

Odd	Even

34 176	62 849
123 456	987 654
520 399	471 002
1 098 765	4 342 998
8 888 881	7 676 767
i de la companya de	